Course Description |
|
Course Name |
: |
Tunnel And Shaft Opening |
|
Course Code |
: |
MMD321 |
|
Course Type |
: |
Optional |
|
Level of Course |
: |
First Cycle |
|
Year of Study |
: |
3 |
|
Course Semester |
: |
Fall (16 Weeks) |
|
ECTS |
: |
3 |
|
Name of Lecturer(s) |
: |
Instructor TAYFUN YUSUF YÜNSEL |
|
Learning Outcomes of the Course |
: |
Recognizes the engineering geology and rock mechanics in tunneling. Knows the important points in route planning. Knows about the stresses in tunneling. Knows about supporting in tunneling and shafting.
|
|
Mode of Delivery |
: |
Face-to-Face |
|
Prerequisites and Co-Prerequisites |
: |
None |
|
Recommended Optional Programme Components |
: |
None |
|
Aim(s) of Course |
: |
To introduce the tunnelling and shafts, construction parameters, soil or rock properties affecting construction, using areas of tunneling and shafts. |
|
Course Contents |
: |
Introduction/ Determination of tunnel route/ Influence of geological conditions on design and construction of tunnels and shafts/ Tunneling methods in soft and rock conditions/ Ground treatment in tunneling/ Hazards in tunneling/ Design and support methods of tunnels and shafts/ Stresses and displacements in tunnel and shaft excavation/ Support component of tunnel and shaft. |
|
Language of Instruction |
: |
Turkish |
|
Work Place |
: |
Class |
|
|
Course Outline /Schedule (Weekly) Planned Learning Activities |
| Week | Subject | Student's Preliminary Work | Learning Activities and Teaching Methods |
|
1 |
Descriptive information about wells and tunnels. |
Studies the lecture notes, explores the links |
Presentation, question and answer |
|
2 |
Rock classifications |
Studies the lecture notes, explores the links |
Presentation, question and answer |
|
3 |
Soil classifications |
Studies the lecture notes, explores the links |
Presentation, question and answer |
|
4 |
The effects of tunnel rock and soil structure |
Studies the lecture notes, explores the links |
Presentation, question and answer |
|
5 |
Description of the tunnel, components, construction, fortification types |
Studies the lecture notes, explores the links |
Presentation, question and answer |
|
6 |
Tunnel excavation methods |
Studies the lecture notes, explores the links |
Presentation, question and answer |
|
7 |
Tunnel excavation techniques |
Studies the lecture notes, explores the links |
Presentation, question and answer |
|
8 |
Midterm exam |
Midterm exam |
Midterm exam |
|
9 |
Special tunneling methods |
Studies the lecture notes, explores the links |
Presentation, question and answer |
|
10 |
Drilling and blasting in tunneling |
Studies the lecture notes, explores the links |
Presentation, question and answer |
|
11 |
Types of explosive substances and elements |
Studies the lecture notes, explores the links |
Presentation, question and answer |
|
12 |
Blasting the realization |
Studies the lecture notes, explores the links |
Presentation, question and answer |
|
13 |
Well drilling, operations, and fortifications |
Studies the lecture notes, explores the links |
Presentation, question and answer |
|
14 |
Special drilling methods |
Studies the lecture notes, explores the links |
Presentation, question and answer |
|
15 |
Final exam |
Final exam |
Final exam |
|
16/17 |
Final exam |
Final exam |
Final exam |
|
|
| Contribution of the Course to Key Learning Outcomes |
| # | Key Learning Outcome | Contribution* |
|
1 |
Students gain adequate knowledge about the engineering fields in the branches of mathematics, physical sciences or their own branches |
5 |
|
2 |
Students follow the current developments in their fields with a recognition of the need for lifelong learning and constantly improve themselves |
3 |
|
3 |
Students use the theoretical and practical knowledge in mathematics, physical sciences and their fields for engineering solutions |
3 |
|
4 |
Students choose and use the appropriate analytical mehtods and modelling techniques to identify, formulate, and solve the engineering problems |
4 |
|
5 |
Students design and carry out experiments, collect data, analyze and interpret the results. |
2 |
|
6 |
Students gain the capacity to analyze a system, a component, and desing the process under realistic constraints to meet the desired requirements; and the ability to apply the methods of modern design accordingly |
0 |
|
7 |
Students choose and use the modern technical tools necessary for engineering practice. |
2 |
|
8 |
Students gain the ability to work effectively both as an individual and in multi-disciplinary teams. |
0 |
|
9 |
Students use the resources of information and databases for the purpose of doing research and accesing information. |
0 |
|
10 |
Students follow the scientific and technological developments in recognition of the need for lifelong learning, and continuously keep their knowledge up to date. |
0 |
|
11 |
Students use the information and communication technologies together with the computer software at the level required by the European Computer Driving Licence. |
0 |
|
12 |
Students use a foreign language according to the general level of European Language Portfolio B1 to communicate effectively in oral and written form. |
0 |
|
13 |
Students gain the ability to communicate using technical drawing. |
0 |
|
14 |
Students become informed of professional and ethical responsibility. |
0 |
|
15 |
Students develop an awareness as regards project management, workplace practices, employee health, environmental and occupational safety; and the legal implications of engineering applications. |
0 |
|
16 |
Students develop an awareness of the universal and social effects of engineering solutions and applications, the entrepreneurship and innovation subjects and gain knowledge of contemporary issues |
0 |
| * Contribution levels are between 0 (not) and 5 (maximum). |
|
|